COMMONWEALTH OF MASSACHUSETTS ENERGY FACILITIES SITING BOARD

Petition of Vineyard Wind LLC pursuant to G.L. c. 164, § 69J for Approval to Construct Transmission Facilities in Massachusetts for the Delivery of Energy from an Offshore Wind Energy Facility Located in Federal Waters to an NSTAR Electric Company (d/b/a Eversource Energy) Switching Station Located in the Town Of Barnstable, Massachusetts.

EFSB 17-05

Petition of Vineyard Wind LLC pursuant to G.L. c. 40, § 3 for Exemptions from the Operation of the Zoning Ordinances of the Town of Barnstable and the Zoning Bylaw of the Town of Yarmouth for the Construction and Operation of New Transmission Facilities in Massachusetts for the Delivery of Energy from an Offshore Wind Energy Facility Located in Federal Waters to an NSTAR Electric Company (d/b/a Eversource Energy) Switching Station Located in the Town of Town of Barnstable, Massachusetts

Petition of Vineyard Wind LLC pursuant to G.L. c. 164, § 72 for Approval to Construct and use Transmission Facilities in Massachusetts for the Delivery of Energy from an Offshore Wind Energy Facility Located in Federal Waters to an NSTAR Electric Company (d/b/a) Eversource Energy) Switching Station Located in the Town of Barnstable, Massachusetts. D.P.U. 18-18

D.P.U. 18-19

1 2. 3 4	Vineyard Wind, LLC EFSB 17-05/D.P.U. 18-18, 18-19 Exhibit TOB-AP-1 Date: August 27, 2018
5	Presiding Officer: Kathryn Sedor
6	Page 2 of 13
7	
8	COMMONWEALTH OF MASSACHUSETTS
9	ENERGY FACILITIES SITING BOARD
10	EFSB 17-05/D.P.U. 18-18; 18-19
11	DIDECT TESTIMONIV OF ANNI MADIE DETDICCA
12	DIRECT TESTIMONY OF ANN MARIE PETRICCA
13	O Please state your name position and employer
14	Q. I lease state your name, position, and employer.
16	A. Ann Marie Petricca, C.P.G., Director of Geosciences, Environmental Partners
17	Group, Ouincy, MA.
18	
19	Q. On whose behalf are you testifying?
20	
21	A. The Town of Barnstable.
22.	
23	Q. Please tell us about your education and professional background.
24	
25	A. My resume is attached.
26	
27	Q. What is the purpose of your testimony?
28	
29 [.]	A. As a Certified Professional Geologist who is extremely familiar with the
30	Hyannis water System and the geology and hydrology at the site of the Company's
31	proposed independence Park substation, and because of my expertise in string and
32	process. I have been asked to examine this project and provide evidence to the
37	Siting Board
34	Shing Doard.
36	O. Please describe the geologic history, the hydrology of the area, and the sole-
37	source groundwater lens serving the Hyannis Water System.
38	
39	
40	

41 42 43	Vineyard Wind, LLC EFSB 17-05/D.P.U. 18-18, 18-19 Exhibit TOB-AP-1	
44	Date: August 27, 2018	
45	Presiding Officer: Kathryn Sedor	
46	Page 3 of 13	
47		
48	A. Cape Cod was formed at the end of the Ice Age as a glacier melted. The melt	
49	outwash at its leading edge deposited sand, clay, and rock and formed what is now	
50	Cape Cod. The soils in the subject area are generally very sandy and porous.	
51		
52	The highest point of land on the Cape generally follows the mid-Cape highway	
53	south and Cape Cod Bay on the north. The aquifer receives all of its water from	
55	south and Cape Cod Bay on the north. The aquifer receives all of its water from	
56	water bodies and saltwater bodies and at wells. The groundwater from the	
57	Sagamore lens ultimately discharges to Cape Cod Bay to the northeast and	
58	Vinevard Sound to the south. Groundwater flows along those contours from the	
59	high point downward generally towards both bodies of water. Groundwater flows	
60	generally south and southeast in the vicinity of the Town's Mary Dunn wells, its	
61	Maher wells, and more southerly towards its Hyannis Port, Simmonds Pond, and	
62	Straightway wells. Based on nearby USGS Groundwater Watch well data,	
63	groundwater in the vicinity of the Company substation in Independence Park may	
64	be as shallow as 15-30 feet below the surface. However, no site specific depth to	
65	groundwater data is available for the Company substation in Independence Park.	
66		
67	Q. At the Town's request, you examined the MSDS sheets for dielectric fluids that	
68	NSTAR uses in its Independence Park substation and that Cape Wind would have	
69	used if it had built its substation there. What are the trade-names of those products	
70	and what warnings on their MSDS sheets are relevant to this matter?	
71	A The two products are Faridal and Edisal Both are ail-based and are exemplars	
72	of dielectric fluids used in the industry to cool transformers and other high-voltage	
74	electric equipment. I am informed that Vinevard Wind will be using such a cooling	
75	fluid, although it has not been identified vet.	
76		
77	The MSDS sheet for Faridol indicates:	
78		
79	The MSDS for Section 6 states, "Environmental Precautions: Do not release into	
80	the environment. Do not let product enter drains. Dam up."	

81 82 83 84 85 86 87 88	Vineyard Wind, LLC EFSB 17-05/D.P.U. 18-18, 18-19 Exhibit TOB-AP-1 Date: August 27, 2018 Presiding Officer: Kathryn Sedor Page 4 of 13 The MSDS for Benzyltoluene under Section 8 indicates under Risk Management
89 90 91	soil, surface or groundwater. Prevent leaks and prevent soil/water pollution caused by leaks.
92 93	Faridol contains 70-80% benzyltoluene. It has an estimated concentration of 20- 30% dibenzyltoluene which has "strong absorption" mobility in soil (Section 12).
94 ⁻ 95 96 97	The MSDS for Dibenzyltoluene under Section 8, Risk Management Recommendations – Environment Protective Measures indicates, "Do not release into the environment. Do not let the product enter drains. Dam up. Provide a catch tank in a bunded area. Provide impermeable floor."
98 99	The MSDS sheet for Edisol indicates:
100 ⁻ 101 102 103 104	The MSDS for Edisol VI Section 12 states, "Do not allow product to reach groundwater" Section 6 states, "Prevent material from entering storm sewers, ditches, or drains that lead to waterways."
105 106	Section 2 identifies the substance classification as "Acute Tox 4".
107 108 109 110	Q. Based on the oil content and chemical makeup of Faridol and Edisol, are one or both listed by name or generically in the Massachusetts Contingency Plan and in <i>Standards and Guidelines for Contaminants in Massachusetts Drinking Waters</i> published by MADEP? If so, what is the reportable concentration in ground water
111 112 113	serving public water supply above which a municipality must abandon such water supply?
114 115 116 117	A. The maximum allowed concentration of total petroleum hydrocarbons in drinking water or in a potential drinking water source area (Independence Park substation is located within the Zone II for the Town's public water supply wells) is 0.2 mg/L or 1:5,000,000.

118		Vineyard Wind, LLC
119		EFSB 17-05/D.P.U. 18-18, 18-19
120		Exhibit TOB-AP-1
121		Date: August 27, 2018
122		Presiding Officer: Kathryn Sedor
123	×	Page 5 of 13
124		
125	Q. Vineyard Wind proposes to install four (4	1) large, ground-mounted transformers
126	at the Independence Park site. Each will con	tain approximately 10,000 gallons of
127	dielectric fluids. If a catastrophic event cause	es a full release of dielectric fluid from
128	only one transformer and that fluid enters the	e ground water, how many gallons of
129	water could potentially be rendered unusable	e?
130		
131	A. The math is simple. 10,000 x 5,000,000 e	quals 50 Billion gallons of water
132	which could be rendered undrinkable. A cata	astrophic failure of all four
133	transformers would contaminate 200 Billion	gallons of water.
134		
135	Q. What is the most recent annual gallonage	of water pumped in the Hyannis
136 [.]	Water District and from the Mary Dunn Wel	lfield specifically?
137		
138	A. The entire district pumped 517,000,000 g	gallons of water in 2017. The Mary
139	Dunn Wells which are most at risk in this ma	atter pumped about 196,000,000
140	gallons of water in 2017.	
141		≜
142	Q. Vineyard Wind has proposed a containme	ent basin at its substation to capture
143	any release of hazardous products. However	, it has produced no plans for
144	containment, has done no soil testing at the s	site of the substation, and has not
145	identified the make of dielectric fluid, its che	emical content, and its properties such
146	as viscosity, permeability, solubility, or flam	mability. Without these parameters
147	being disclosed, is it possible even begin to e	evaluate the risks posed at the site or
148	the adequacy of mitigation and design to a re	easonable scientific certainty? Explain
149 _.	fully.	
150	A 3377/1 / 11 C/1	
151	A. Without any or all of those parameters ide	entified with specificity, it is not
152	possible to even begin to evaluate the risks p	osed or the mitigation necessary.
153	without scientific testing of the chosen diele	ctric fluid/s to determine how quickly
154	they would percolate to the groundwater, ho	w they would mix with groundwater
155	on contact, and now quickly they would be t	ransported to various town wellneads,
156	it is impossible to assess risk and therefore if	mpossible to evaluate response time
15/	and actions necessary to minimize the impac	a of a release.

158	Vineyard Wind, LLC	
159	EFSB 17-05/D.P.U. 18-18, 18-19	
160	Exhibit TOB-AP-1	
161	Date: August 27, 2018	
162	Presiding Officer: Kathryn Sedor	
163	Page 6 of 13	
164		
165.	Further, it is also impossible gage the adequacy of containment for at least two	
166	reasons. First, the containment vessel is apparently going to be made of concrete	
167	which is an inherently porous product. IEEE 980, the industry standard for	
168	substation containment, calls for impermeable blankets to be placed below the	
169	primary containment, i.e., the concrete structure. The chemical makeup and	
170	physical properties of the dielectric fluids must be lab-tested against the concrete	
171	and blanket substrate to determine whether the containment systems are actually	
172 [.]	impermeable to the chosen fluid.	
173		
174	As one example, studies related to the emerging contaminant 1,4-dioxane (which	
175	was historically used in laundry detergent and liquid dish soap) indicate that the	
176	release of 1,4-dioxane could penetrate a 1 meter thick compacted clay liner and	
177	result in groundwater concentrations that exceed drinking water guidelines. In	
178	groundwater 1,4-dioxane is extremely soluble, does not readily adhere to soils, and	
179	can migrate long distances. Not knowing the composition of the di-electric fluids	
180	proposed for the transformers at the Independence Park substation makes it	
181	impossible to adequately determine an appropriate containment system.	
182		
183	Secondly, the containment vessel needs to be designed with the ability to drain	
184	rainwater without allowing hazardous materials to pass through. A common	
185	product sold as "imbiber beads" is placed in drains and is designed to allow water	
186	to pass and drain but is also designed to immediately swell on contact with oil-	
187	based liquid and to completely block drainage. The imbiber beads must be lab-	
188	tested against all hazardous products at the substation to assure that it will react	
189	and function as advertised.	
190		
191	Q. Why is soil testing necessary?	
192·		
193	A. In planning for worst case scenarios, it is vital to understand how quickly any or	
194	all of the hazardous products at the substation could migrate through the sandy,	
195	glacial soil directly below the substation to reach the groundwater. Exact depth to	
196	groundwater in the area of the Substation is not known for certain at this time.	
197		

198 199 200 201 202 203 204		Vineyard Wind, LLC EFSB 17-05/D.P.U. 18-18, 18-19 Exhibit TOB-AP-1 Date: August 27, 2018 Presiding Officer: Kathryn Sedor Page 7 of 13
204 205 206 207	With accurate lab test results, it is then possi and equipment, notification, and alarm proto to capture a hazardous release before it reach	ble to evaluate required response times cols that must be in place or available nes groundwater.
209 210 211 212	Q. Other than modeling, is there site-specific direction of ground water flow below the sub rate of migration and time-to-impact wellhea information critical to risk evaluation and mi	e testing data available to confirm ostation, depth to groundwater, and ids in the event of release? Is this tigation plans? Explain.
213 214 215 216 217 218 219 220 221	A. It is vital that depth to groundwater, rate of flow, and direction of groundwater flow under various well pumping conditions be fully and accurately understood in real life application. Having this information will inform all interested parties of the wells most likely at risk from a hazardous product release and the time-to- impact nearby environmental receptors (groundwater supply wells or protected surface water bodies) in such an event. This information is vital to determine whether the Hyannis Water System can survive such an impact, how much, and for how long.	
222	Q. What other critical variables are unknown	at this point?
224 225 226 227 228. 229 230 231	A. Certainly the ability or inability to filter in parameter. If the chosen dielectric fluid, for a in groundwater, extracting or filtering this pr process, if not impossible. For example, an e release at Cape Cod Potato Chips factory nea Barnstable Water District well for over a dec	mpacted groundwater is a critical example, is highly or infinitely soluble roduct may be an exceptionally lengthy stimate ten-gallon cleaning product arby several years ago shut down a eade.
232 233 234 235 ⁻ 236 237	Here, the MCP maximum allowed concentra that only a 20-gallon spill that enters ground million gallons of public water supply. We a that water could ever be cleaned to acceptabl what time period.	tion for dielectric fluids would mean water would render undrinkable 100 re left at this point to guess whether le drinking water levels and, if so, over

238 [°] 239	Vineyard Wind, LLC EFSB 17-05/D.P.U. 18-18, 18-19
240	Exhibit TOB-AP-1
241	Date: August 27, 2018
242	Presiding Officer: Kathryn Sedor
243	Page 8 of 13
244	
245	Q. Vineyard Wind has indicated to the Town that it will not be able to avail itself
246	of so-called biodegradable cooling fluids for its transformers in a timely manner to
247	accommodate its construction schedule. Nevertheless, its filings with the Board
248	and elsewhere continue to suggest that use of biodegradables might be a viable
249	alternative to oil-based dielectrics. Please comment on this possibility.
250	
251	A. The term "biodegradable" in context is misleading, given the concerns about the
252	ultra-sensitivity of the receptor, the Hyannis Water system. First, the product to my
253	understanding is still oil-based. Therefore, it is likely to be subject to the same
254	MCP classification as other oil-based products, including Edisol and Faridol.
255	
256	Secondly, "biodegradability" may create a false sense of security. If it degrades on
257	its own but takes an extended time to do so (months or even years, given volumes
258	involved), its release to the environment will create the same crisis for the Hyannis
259	System.
260	
261	We do not know its chemical make or its behavioral properties. In short, all of the
262	information and testing discussed above would be required if such a product were
263	proposed for use. Without that information, the risk parameters remain the same.
264	
265	Q. Are there other wells at risk?
266	
267	A. It is possible that, depending on groundwater flow, pumping, and rainfall
268	conditions, additional Hyannis District wells could be impacted by such a release.
269	Beyond that it is possible that Yarmouth wells which are generally down-gradient
270	of the Hyannis wells and, depending upon the solubility and mobility of the fluid
271.	released, could also be impacted and be required to be shut down.
272	
273	Knowing this information is vital. The Hyannis Water system is in precarious
274	condition due to other sources of pollution. It has no redundancy capacity and the
275	loss of even a single well, never mind three or more Mary Dunn wells, would
276	create emergency conditions for the system. All of this information must be fully
277	understood to evaluate the risks of the proposed Company installation at

278 279 280 281 282 283 284	V E E D P P	Vineyard Wind, LLC EFSB 17-05/D.P.U. 18-18, 18-19 Exhibit TOB-AP-1 Date: August 27, 2018 Presiding Officer: Kathryn Sedor Page 9 of 13
285 286 287	Independence Park. It is also vital that the sam respect to the Oak Street, West Barnstable, sul Vineyard Wind's preferred alternative.	ne information be fully available with bstation which is apparently
288 289 290	Q. What is the cost to conduct such testing?	
290 291 292 293 294 295 296 297 298 299 300 301 302	A. Actual costs may vary depending on the de the overburden deposits above bedrock at the site would include installation of five observat testing. This information would be incorporat groundwater flow model to determine groundw times. We would also need to characterize the under release conditions. This would include well as bench testing to determine how mobile as the behavior of the dielectric fluid with resp system and leak detection system. Site evalua \$100,000 to \$125,000 per site. These costs are	where the fluid is in the subsurface as well between the fluid is in the subsurface as well between the proposed containment the distribution of the properties above to the proposed containment the based on present day costs.
303	Q. Is containment the only solution to the risk	?
305 306 307 308	A. No, it is not. Containment is the first step b be online in perhaps 24 months and there is no can be deployed to fully protect the public wat	because the project, if approved, will o mitigation, short of no-build, which ter supply in that timeframe.
309 310 311 312	But containment does not fully address risk. A for release come readily to mind. First, in the e transformer with projectile distribution of diele the containment vessel, the fluids could reach	at least four additional possibilities event of a catastrophic explosion of a ectric fluids beyond the borders of groundwater.
313 314 ⁻ 315 316 317	Second, in the event of a fire and release from whether the imbiber beads could or would surv in the fire, an uncontrolled release to groundw possibility needs to be bench-tested.	the containment vessel, it is unclear vive the fire. If they were consumed rater would be highly likely. This

.

318		
319	Vi	ineyard Wind, LLC
320	E	FSB 17-05/D.P.U. 18-18, 18-19
321	Ех	xhibit TOB-AP-1
322	Da	ate: August 27, 2018
323	Pr	esiding Officer: Kathryn Sedor
324	Pa	age 10 of 13
325		
326	Third, in today's extreme weather environment	t, it is certainly possible that
327	sufficient rain could fall in a concentrated perio	od of time such that the level of
328	fluids and water could exceed the height of the	containment vessel, thus releasing
329	hazardous produce to groundwater. Last year al	lone, there were two rain events
330,	within about two weeks of one another that dur	nped more than eight (8) inches of
331	water on the project locus. Each was the near each	quivalent to a 100-year, 24-hour
332	storm event. A slow-moving hurricane or the le	engthy, multi-day event such as the
333	"no-name" storm of the 1990's could produce of	over-top spillage.
334		
335	Fourth, dielectric fluids are periodically deliver	red by and then pumped out into
336	tanker trucks for proper disposal. This creates t	he risk of an accident outside the
337 [.]	containment vessel with the release directly to	groundwater.
338		
339	For example, in July of 1978, the South Hollow	v Wellfield in Truro, that supplies
340	much of the public water to Provincetown, was	closed after an underground
341	gasoline tank leaked 3,000 gallons of fuel. The	gasoline spill directly impacted the
342	Town's water supply wells and, the South Holl	ow Wellfield (consisting of 8 wells)
343	was entirely shut down from 1978 to 1980, pun	nped at 0.25 MGD from 1981 to
344	1984, and went back up to 1 MGD in 1985 to 1	986. Operation of the South
345	Hollow wellfield was impacted for over 5 years	s. The National Park Service (NPS)
346	allowed a temporary well site to be established	and to be used by the Town while
347	South Hollow was off line. The NPS Cape Coc	d National Seashore, which consists
348	of 68 square miles of preserved parkland, was a	able to develop a water supply
349	source to sustain Provincetown and Truro durin	ng this period. Not many places on
350	Cape Cod afford this luxury.	
351		
352	The only answer to these risks is to relocate the	e wells and treatment facilities out of
353	harm's way upstream from the substation.	
354		
355	Q. How long would well relocation take?	
356		
357		

358 359	Vineyard Wind, LLC FFSB 17-05/D P II 18-18 18-19	
360	Erbb 17-05/D.1.0. 10-10, 10-17 Exhibit TOB-AP-1	
261	Date: August 27, 2018	
262	Date. August 27, 2010 Presiding Officer: Kathryn Sedor	
362	Page 11 of 13	
364	1 age 11 01 15	
365	A The process is lengthy and could take 5 to 10 years to complete site selection	
366	exploration testing permitting and construction depending on how many new	
367	water supply sources are required to replace the existing wells	
368	water supply sources are required to replace the existing wens.	
360	O What is the estimated cost to do so?	
370	Q. What is the estimated cost to do so:	
370	The Mary Dunn Wellfield consists of four water supply wells. If all four wells	
372	need to be replaced and multiple new source water supply sites may have to be	
372	developed with no guarantee that the any of the exploration sites are a viable	
374	public water supply source. Assuming exploration is performed at five properties	
375	and water supply wells are developed at four locations, the exploration, testing and	
376	permitting may cost \$5 million. Construction of four pump houses assuming pH	
377	adjustment only (excellent water quality) and a valve control station at each site as	
378	well as connection to the existing water system (assuming 1000 feet of pipe for	
379	each station), then construction costs may be \$15 million. Thus total costs may be	
380	on the order of \$20 - \$25 million.	
381		
382	If additional water treatment is required (i.e., for naturally occurring iron or	
383	manganese, which is common in New England) then an additional \$10 million may	
384	be required.	
385		
386	These estimates are based on present day costs. According to the Associated	
387	General Contractors of America "Trump Tariffs Cause Construction Costs to	
388	Soar", they note that the cost of all goods used in construction rose 8.8 percent	
389	over the past year and that other construction inputs that rose sharply in price	
390	include diesel fuel, which rose 44.5%. These escalations in cost are not included in	
391	our estimate to replace the Mary Dunn wellfield, but must be considered if the	
392	Mary Dunn wells are replaced at a later date.	
393.		
394	This estimate does not include the cost of land acquisition.	
395		
396	Q. Are there other deficiencies in the Company's information disclosure which	
397	must be supplemented?	

398 399 400 401 402 403	Vineyard Wind, LLC EFSB 17-05/D.P.U. 18-18, 18-19 Exhibit TOB-AP-1 Date: August 27, 2018 Presiding Officer: Kathryn Sedor Page 12 of 13
404 405 406 407 408 409 410 411 412	A. Yes. We need information concerning the Company's spill response plan ashore. We need to know how often the site and transformers will be physically examined for leaks and other relevant observations. At a minimum, we need to know what equipment will be stored on site, how the station will be alarmed, who will receive notice of an alarm, how quickly an on-site response will occur, how quickly thereafter full mobilization will occur, and where that mobilization team will assemble before transiting to the substation.
412 413 414 415 416	Q. Vineyard Wind has requested that it be granted a waiver from the application of the Barnstable Zoning Ordinance. Does that request necessarily implicate explicit MADEP directives concerning public water supplies?
418 417 418 419 420 421	A. It does. As will be explained by other Town witnesses, the Town has a robust zoning enactment designed to protect public water supplies. That regimen is informed by MADEP guidelines and directives intended to tightly control and protect public well water sources which MADEP requires to be implemented by the local municipality as a condition for approving new well construction.
422 423 424 425 426 427 428 429 430	Vineyard Wind's request to avoid application of the detailed water supply protection afforded by Barnstable's Zoning Ordinance, enacted in direct response to MADEP directives, necessarily implicates and impliedly directly conflicts with MADEP statutory, regulatory, and policy requirements. Barnstable's sole-source aquifer is, by definition, its only source of potable water. A D.P.U. waiver of zoning in this respect is inconsistent with sound public policy and potentially allowing a lesser standard of protection by granting the requested zoning waiver will unnecessarily put Barnstable's water supply at a higher degree of risk.
431 432 433 434 435	Doing so would be inconsistent with the mandate of G.L. c. 164, § 69 J that the Company's plans are "consistent with current health, environmental protection, and resource use and development policies as adopted by the Commonwealth."
436 437	Vineyard Wind, LLC EFSB 17-05/D.P.U. 18-18, 18-19

438	Exhibit TOB-AP-1	
439	Date: August 27, 2018	
440	Presiding Officer: Kathryn Sedor	
441	Page 13 of 13	
442		
443	Q. Do you have a recommendation regarding dielectric fluids as relates to this	
444	permitting process?	
445		
446	A. Yes. The Board should not, under any circumstances, approve this project until	
447	the dielectric fluid/s proposed to be used at the Company substation are identified	
448	and until all testing protocols discussed above have been satisfactorily completed.	
449	Limited additional hearings on this finite subject would be warranted once	
450	identification and testing is complete.	
451		
452	Q. Does that complete your testimony?	
453		
454	A. Subject to rebuttal testimony, the SDEIR MEPA filing, and further discovery, it	
455	does.	
456		
457		
458	Signed under the pains and penalties of perjury at Barnstable this 30 th day of	
459	August, 2018.	
460		
461	12 200 - 624 -	
462	Chulllee Keluoca	
463	Ann Marie Petricca, C.P.G.	

F

Ann Marie Petricca, C.P.G.

Director of Geosciences

Background

Ms. Petricca has more than thirty years of diversified geologic experience and 25 years of environmental consulting experience in the water supply, hydrogeology, hazardous waste and solid waste fields. Her work experience has included management, budget management, project proposal preparation, management and implementation of field activities, report preparation and regulatory coordination and compliance. Technical experience and expertise includes geologic and hydrogeologic site characterization, water supply exploration and development, Massachusetts Contingency Plan (MCP) and Superfund Remedial Investigations and implementation of remedial measures, landfill assessments, geophysical techniques, and ASTM Phase I environmental assessments (domestic and international), and wastewater effluent monitoring. Field experience includes installation and sampling of monitoring wells, soil borings, test pits, and soil gas; aquifer characterization and testing; and geophysical surveys (seismic, EM, magnetometry, GPR, and borehole geophysics).

Education

- M.S., Geology, Indiana University, 1985
- B.S. Geology, Duke University, 1982

Certifications

- Certified Professional Geologist American Institute of Professional Geologists
- 40-Hour OSHA Hazardous Waste Operations Health and Safety Training
- 8-Hour OSHA Hazardous Waste Operations Supervisors Training
- Municipal Vulnerability Preparedness Certified Provider

Professional Affiliations

American Institute of Professional Geologists

Awards

- Winner 1995 ERM Group Excellence Award

 International Category for paper on Due
 Diligence Environmental Assessment of 14
 Razor Blade Manufacturing facilities in
 India.
- Winner 1996 ERM-New England Excellence Award for Technical Excellence
- Winner 1997 ERM-New England Excellence for Client Service

New Source Water Supply Investigations and Permitting, Plymouth, MA – Ms Petricca is the Project Manager and hydrogeologist for the new source water supply development project for the Town of Plymouth. The goal of the project is to identify, test and permit a 1 million gallon per day (MGD) new source water supply. She managed a preliminary investigation phase to evaluate geology, aquifer characteristics and compliance with state public water supply requirements in Plymouth, including land uses, aquifer testing and preliminary groundwater modeling. Specific issues of concern at the water supply sites included potential impacts to cold water fisheries, fish ladder, kettle ponds, as well as numerous private water supply wells. Ms. Petricca managed the new source permitting process including Request for Site Exam and Pump Test Reports. Modeling was performed to evaluate drawdown impacts to nearby surface water features and private wells, and to delineate Zone II and Zone III boundaries.

New Source Water Supply Investigations and Permitting, Norfolk, MA - Ms Petricca is the Project Manager and hydrogeologist for the water supply new source development project for the Town of Norfolk, MA. The Town has limited redundancy for their existing water supply sources, has difficulty meeting peak day summer demands, and as a result has had to purchase water from neighboring towns. After investigations at five sites a potential shallow wellfield (minimum of three production wells located less than 50 feet apart) water supply site was identified. Exploration at the site identified six test well locations for the wellfield. An observation network was installed to evaluate pumping effects to nearby wetlands and the Charles River. A 7-day pump test with six pumping wells was conducted in June 2017, which indicated the potential for a hydraulic boundary that would control the productivity of the wellfield. Ms. Petricca worked with McLane Environmental to develop a hydrogeologic model for the wellfield and surrounding area. McLane developed an AnAqSim hydrogeologic model to evaluate the pumping capacity for the wellfield and potential impacts to the Charles River. Seasonal fluctuations in the water table can also reduce the wellfield capacity by as much as 20%. Ms. Petricca managed the new source permitting process including Request for Site Exam and Pump Test Report as well as oversight of the Environmental Notification Form (ENF) under MEPA and DEP Water Management Act Amendment.

New Source Water Supply Investigations and Permitting, Eastham, MA – Ms Petricca was the lead hydrogeologist for the water supply new source development project for the Town of Eastham. The goal of the project was to develop and permit a Town-wide municipal water supply system with average daily demand of 1 MGD and peak demand of 2.6 MGD. She managed a preliminary investigation phase to evaluate geology, aquifer characteristics and compliance with state public water supply requirements in Eastham, including land uses, aquifer testing and preliminary groundwater modeling. Specific issues of concern at the water supply sites included potential impacts to surface water streams and vernal pools and the potential for saltwater upconing or intrusion. Ms. Petricca prepared and submitted to DEP three Requests for Site Examination and Approval to Conduct Aquifer Performance Tests (for sources greater than 100,000 gallons per day) for each of the sites.

Environmental 🖾 Partners

Director of Geosciences

Under the second phase of this project she managed the installation of 22 observation wells, surface water piezometers and staff gauges, and four 12-inch test production wells at the three sites. Aquifer performance tests (5-8 days) were performed at each of the sites. Ms. Petricca worked with the groundwater modeling team to incorporate site data into the Nauset Lens SEAWAT groundwater model to delineate the Zone II, Zone III and sustainable yield for each site. She prepared Source Final Reports to permit four public water supply wells for the Town that are approved by DEP for a total of 3.1 MGD. This project also included coordination with the NPS-Cape Cod National Seashore, whose property abuts two of the sites.

Boy Scout Camp Wells, Wellfleet, MA – Under this project two test production wells were installed and permitted for less than 100,000 gpd. Ms. Petricca was the lead hydrogeologist for the project and provided oversight for installation of the production wells and aquifer testing. Five day pumping tests were performed on each of the wells to support future development of a source for greater than 100,000 gpd and included monitoring of pumping effects to nearby kettle ponds. Ms Petricca analyzed the field data and prepared and submitted a final report to DEP.

Freshwater - Saltwater Transition Zone Wellfield Modeling -North Union Field, Truro, MA As part of the New Source Approval process Pumping Test Report for NUF, Environmental Partners with McLane Environmental, LLC (McLane) performed groundwater quality modeling using the USGS MODFLOW and SEAWAT programs. The purpose of the modeling was to evaluate the potential for saltwater upconing at the NUF wellfield based on different pumping rates and to determine the optimal pumping rate for the NUF wellfield. An observation well monitoring program was designed to ensure the potability of the produced water by monitoring water quality in the intermediate and deep aquifer zones beneath the NUF site. The SEAWAT model was used to determine sodium and chloride concentrations at each of four intermediate and four deep monitoring wells over 100 years of pumping at two production wells. After collection of five years of water quality monitoring data at each of the observation wells, Ms. Petricca managed the development of an updated groundwater model using the site-specific water quality data. The updated model was then used to re-evaluate pumping effects on the transition zone and freshwater-saltwater interface and optimize the wellfield pumping operations.

Groundwater Flow Study – Seekonk Water District, Seekonk, MA – Ms. Petricca managed and was the lead hydrogeologist for a groundwater flow study for the Newman Avenue Wellfield, a sole source aquifer. The Wellfield supplies 80 percent of the water for the Seekonk Water District to the residents of Seekonk, MA. This project included performing a hydrogeological study of the Newman Avenue Wellfield for water supply protection, planning, and management purposes. The study included field investigations (soil borings, monitoring wells, stream piezometers, water level monitoring, and aquifer tests) to characterize the hydrogeologic properties of the overburden aquifer surrounding the Newman Avenue Wellfield and development of a groundwater flow model to examine impacts of current and potential future nitrate sources to groundwater within the capture zone of the Wellfield.

Environmental 📨 Partners

Director of Geosciences

As part of this hydrogeologic study the Zone II for the wellfield was redelineated and permitted under DEP and aquifer protection bylaws were updated.

Comprehensive Wastewater Management Plan, Wellfleet, MA The CWMP for Wellfleet includes a unique oyster reef enhancement and spawning demonstration project for removal of nitrates from the harbor. Ms. Petricca managed the water quality monitoring program under the CWMP, including installation and sampling of monitoring wells downgradient of the downtown area, continuous water quality monitoring with a dedicated YSI, and review and evaluation of creek, harbor and oyster reef site water quality data collected by the Provincetown Center for Coastal Studies, to evaluate water quality effects from the development of the oyster reef.

Wastewater Effluent Discharge Monitoring, Provincetown, MA Wastewater effluent from the Provincetown treatment plant is discharged at several locations along Route 6. Ms. Petricca managed the effluent discharge monitoring program, including monitoring of water levels upgradient, downgradient and within the groundwater discharge sites, water quality sampling, and DEP coordination and reporting.

Aquarion Water Tank Site, Hull, MA – Historically, two water tanks (585,000 gallons and 500,000 gallons) were located on this property to supply water storage and pressure for the residents of Hull. After tank demolition, concentrations of PCBs, lead, and other metals were detected in the soil fill material (related to the fill material, tank paint or both) that required assessment and remediation under EPA and DEP regulations. Ms. Petricca collected detailed soil quality data and supported preparation of a Phase 2/Phase 3 under the DEP MCP program. She was Project Manager for the Phase IV Remedy Implementation Plan and managed the excavation and offsite disposal of 195 tons of TSCA PCB soils and almost 1700 tons of PCB contaminated soils. The site was located in a densely residential area and extensive health and safety precautions were implemented to prevent offsite contamination. A Permanent Solution Statement was submitted for the Site in July 2016.

Stormwater MS4 Compliance, Duxbury, Hanover, and Somerset, Massachusetts

Ms. Petricca is the Project Manager for stormwater MS4 permit and compliance activities for the above Towns. Responsibilities vary by Town, and may include: permit compliance; outfall and drainage mapping; outfall inspections and sampling; facility inspections; O&M Plan development; SPCC Plan development, and annual reporting. Stormwater mapping activities vary by Town budgets and Town computer systems, but may include: GPS locating, mapping structures, outfalls, piping, etc.; and using ArcMap for publishing to the Town's GIS website.

Director of Geosciences

Burgess Brothers Superfund Site, Bennington, Vermont -The Burgess Site is a former private landfill that accepted battery waste. Contaminants of concern include chlorinated solvents and metals in groundwater, surface water and soils. Ms. Petricca has been the lead hydrogeologist for this Site since 1994 and managed the development and implementation of the Remedial Investigation (RI), Supplemental RI, Long Term Monitoring, and Feasibility Study (FS). She prepared groundwater, surface water and sediment portions of the Demonstration of Compliance Plan, Post-Closure Environmental Monitoring Plan, and Quality Assurance Project Plan, and assisted with preparation of the Operation and Maintenance Plan for the SVE/air sparge system and landfill cap. She has managed post-closure environmental monitoring, including ambient air and passive gas vent sampling, groundwater, surface water and sediment sampling. In addition, Ms Petricca prepared and negotiated a Groundwater Reclassification Petition with the State of Vermont to downgrade the designation of the aquifer to a non-potable status.

Ms. Petricca managed and conducted additional assessment activities to address changes in the groundwater contaminant plume since capping and closure of the landfill, development of a groundwater flow model, and mass flux dilution calculations. EPA approved a Supplemental Focused FS in 2011 to address the groundwater contaminant plume. Ms. Petricca developed and managed a Pre-Design Investigation to support installation of either a permeable reaction barrier or collection trench to mitigate the groundwater contaminant plume. This collection trench system was installed at the site in 2013 - 2014. Ms. Petricca is managing the long term monitoring program for the site.

Environmental 📨 Partners